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Abstract. The three-dimensional Ising model is studied by means of the Swendsen–Wang,
cluster, Monte Carlo method. The simulations are performed on finite sized systems up to the
96-cube, and the renormalized coupling constant is estimated to beg∗ = 25.0(5). We make
further arguments and computations and say thatg∗ > ĝ and 4.5 . ĝ . 5.4 so thatg∗ > 0
which implies thevalidity of hyperscaling. The Josephson hyperscaling relation also appears to
hold. We give estimates for some of the critical indices.

1. Introduction and summary

For about a third of a century there has been uncertainty about a fundamental question in the
theory of critical phenomena. The question is whether the ‘hyperscaling hypothesis’ is valid
or not. We will report our results on this question for the three-dimensional Ising model.
(A preliminary report was given in [1].) The hyperscaling hypothesis relates to the relations
between critical indices which depend on the spatial dimension. To understand what the
question really is, we give some background. The Ising model, of course, is defined by
spin variables on a spatial lattice which can take on the values±1. The Hamiltonian,H,
for the model is the exchange energyJ times the sum of the products of all the nearest-
neighbour spins. We consider the ferromagnetic case whereJ > 0, and abbreviateJ/kT
to K, where k is Boltzmann’s constant andT is the temperature. An important set of
objects to study in this model is the set of spin–spin correlations. We define them in terms
of SA = ∏

i∈A si , where thesi are the individual spins andA is an index set. Then the
spin–spin correlations〈SA〉 are the expectation values with respect to the Gibbs weight
exp(−H/‖T )/Z, whereZ is the partition function which is just the normalization for the
Gibbs weight. These correlation functions have a number of important properties. Griffiths
[2] showed that〈SA〉 > 0, and (generalized by Ginibre [3]) that〈SASB〉 − 〈SA〉〈SB〉 > 0.
In addition they possess [4] the cluster property,〈SASB〉 − 〈SA〉〈SB〉 6 O(e−µ2ρ) whereρ
is the distance betweenA andB andµ is defined by the two-point correlation function
through the relation

lim
r→∞〈ssss+r〉 ∝ exp(−µ2|r|). (1.1)

In equation (1.1) we consider the case whereK < Kc, the critical value, as here〈si〉 = 0
and the two-point function decays exponentially [5, 6]. In addition they have the property
of ‘two-point dominance’ as shown by the Lebowitz [7] four-point inequalities,

〈sisj sksl〉 − 〈sisj 〉〈sksl〉 6 〈sisk〉〈sj sl〉 + 〈sisl〉〈sj sk〉 (1.2)
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and for higher-point correlations by Newman’s [8] Gaussian inequalities. These are unusual
inequalities in the sense that higher-point expectation values are bounded in terms of lower-
order ones. In equation (1.2), if spinsi and j are close together but far froml andk, we
have an example of the cluster property. To get ahead of the story, the key question turns
out to be whether the inequalities like (1.2) saturate and become equalities or not.

To be more quantitative, let us define a few quantities. First the magnetic susceptibility
is given by

χ(K,L) = L−d ∑
i,j

〈sisj 〉 (1.3)

where for ease of exposition we consider the hyper-cubic lattice family with edgeL in
spatial dimensiond. The critical pointKc is the smallest value ofK for which χ diverges.
It is at this point that theµ defined above goes to zero. It is convenient to define the
correlation length,ξ which is related toµ−2:

ξ2(K,L) =
∑

r,s |r|2〈ssss + r〉
2dLdχ

(1.4)

and also to define the second derivative ofχ with respect to the magnetic fieldH as

∂2χ

∂H 2
= L−d ∑

r,s,t,u

[〈srssstsu〉 − 〈srss〉〈stsu〉 − 〈srst〉〈sssu〉 − 〈srsu〉〈ssst〉] . (1.5)

All of these quantities diverge at the critical point as some power of(Kc − K). The
conventional notation is

χ ∝ (Kc −K)−γ ξ ∝ (Kc −K)−ν
∂2χ

∂H 2
∝ (Kc −K)−γ−21 (1.6)

which defines the critical exponents or indicesγ, ν, and1. It is known [9, 10] that these
critical indices satisfy the inequality

γ + dν > 21. (1.7)

If we take the idea [11, 12] that there is only one important length near the critical point
and that it isξ , and that everything is a function of the ratio of the distances toξ , then we
come to the conclusion that we should have an equality

γ + dν = 21 (1.8)

which is a hyperscaling relation. This equality is equivalent to the idea that the cluster
property holds with a non-zero coefficient for the four-point, spin–spin correlation function,
no matter how we pair up the variables. At this point it is worthwhile remembering a
feature of the Gaussian model. (This model is the same as the Ising model, except that
instead of the spin variables taking on only the values±1, all real values are taken with
probability e−s

2/2ds/
√

2π .) In this model, the6 sign becomes a≡ sign in (1.2) and
∂2χ/∂H 2 ≡ 0. This result shows that there is, in principal, no restriction on reasonable
models that prevents the leading order of the correlation functions from cancelling out.
When this cancellation occurs, the inequality sign is the correct one, and the hyperscaling
hypothesis fails. Aizenman [13] has shown that it also fails for the Ising model ford > 4.
On the other hand, for the two-dimensional Ising model the hyperscaling hypothesis is valid
[13, 14]. For the one-dimensional Ising model, equation (1.8), as appropriately modified to
take account of the zero-temperature critical point, holds [15].

We mention that there is another hyperscaling relation involving the specific heat index
α which converts the Josephson inequality [16], dν > 2 − α into an equality. The index
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α is defined byCH ∝ (Kc − K)−α in the limit asK → Kc. This relation fails [15] in
one-dimension, and can at best be said to hold weakly in two-dimensions, because in two-
dimensionsν = 1 and the specific heat at constant magnetic fieldCH diverges as ln(Kc−K)
which corresponds to anα of zero. All of these exponent relations correspond to the critical
point limit of the logarithm of estimator functions. If instead we look at the estimator
function, we expect it to approach a finite number at the critical point when hyperscaling
holds. In the case of a logarithmic approach, this expectation is not fulfilled, and the
estimator function fails to satisfy the expected properties, but does not, strictly speaking,
cause a failure in the exponent relations. In three-dimensions, our data is consistent with
the validity of this hyperscaling relation.

The interest in this question ford = 3, 4 was heightened with the introduction of the
renormalization group theory of critical phenomena by Wilson [17], for which he won the
1982 Nobel prize in physics. One of the most powerful computational tools for this theory
is the field theory method with its expansion in variable dimension, i.e. theε-expansion
[18]. The hyperscaling hypothesis is implicitly assumed in the method and it would be a
matter of extreme importance if it should fail, as it would have a deleterious effect on a
very large number of computations which have been carried out using this method, not to
mention the problem of a proper understanding of the physics which would be associated
with such a failure.

A quantitative way to examine this question is by an examination of the ‘renormalized
coupling constant’,g∗. First we define the estimator function,

g(K,L) = −
( v
ad

) ∂2χ

∂H 2

/
χ2ξd (1.9)

from which the renormalized coupling constant is defined by

g∗ = lim
K→Kc−0

lim
L→∞

g(K,L). (1.10)

It follows from equation (1.7) thatg∗ does not diverge to infinity. Ifg∗ > 0, then the
hyperscaling relation (1.8) holds. Ifg∗ = 0, then hyperscaling may fail. Hara and Tasaki
[19] have proved in four dimensions thatg(K,∞) ∝ [n0 +| ln(Kc −K)|]−1/2 which means
thatg∗ = 0. However, it vanishes logarithmically, so equation (1.8) holds, but only weakly.
The remaining case is ford = 3, which is what we will investigate in this paper. In the field
theory approach the renormalized coupling constant is estimated [20] asg∗ ≈ 23.73(2).

In his 1967 review, Fisher [21] fully summed up the then current status of the
hyperscaling relations as, ‘These relations involving the dimensionality directly seem
most open to question,. . .’. In a subsequent series analysis Baker [22] estimated that
21 − dν − γ ≡ −ω∗ ≈ −0.028. It is this type of counter-hypothesis that has made this
issue so difficult to resolve. It says that perhapsg(K,∞) vanishes asK → ∞, but as a
very small power of(Kc − K). Practically speaking, in this case, the curve should show
almost no deviation from one which tends to a constant limit until one is very close to the
critical point, and then it drops precipitously. Thus direct computation of theg(K,∞) or
g(K,L) asK → Kc, considering the practical limitations of such calculations, cannot really
demonstrate the validity of hyperscaling. In this paper, we take a two-pronged approach to
the resolution of this issue. First, we computeg(K,L) directly by a Monte Carlo procedure
for a sequence of system sizes so that we keepξ/L fixed. We will argue that we have chosen
a small enough value to keep systematic errors at, or below, the 1% level. This method
will provide a direct estimate ofg∗, providedω∗ = 0 without logarithmic corrections.

The pointK = Kc, L = ∞ is a very special point. We will show, when we are very
specific about the definition of our estimatorg(K,L), that the limit from the low-temperature
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side,

g‡ = lim
K→Kc+0

lim
L→∞

g(K,L) = 0 (1.11)

if hyperscaling is valid, is not equal tog∗. Thus this point is what is called a point of
non-uniform approach. We will argue that the limit

ĝ = lim
L→∞

lim
K→Kc

g(K,L) (1.12)

is a lower bound tog∗ and our calculations show thatĝ is distinctly greater than zero, and
so g∗ > 0, which in turn implies that the hyperscaling relation (1.8) is valid, which was
our main point of inquiry. Note that the quantityg‡ is not the same as the renormalized
coupling constantg∗

− that is computed from a proper approach to the critical point from the
low temperature side, nor is it the ratio of the corresponding, critical-point amplitudesG−

1
taken on the low-temperature side. These latter quantities are discussed by Zinnet al [23].

To our knowledge, the first clear illustration of the fact thatK = Kc,L = ∞ is a point
of non-uniform approach forg(K,L) is that given by Baker [24] from exact calculations
by the Markov property method for small two-dimensional squares with periodic boundary
conditions. We reproduce his figure here as figure 1. In this figure we see forK < Kc that
the finite size system results are approaching the infinite system size limit in a straightforward
fashion. However, forK = Kc, the values ofg(Kc, L) seem instead to be approaching a
limit around 3 instead of the value ofg∗ ≈ 14.66±0.06. It is this result which foreshadowed
the present work.

From the practical point of view, another important insight was the recognition of
Baker and Erpenbeck [25] of the data collapse which results from plotting the renormalized
couplingg(K,L) versusξL/L (see also Kim and Landau [26]). The same data collapse does
not occur if the plot is made ofg(K,L) versusξ∞/L, for example. We reproduce Baker
and Erpenbeck’s figure here as figure 2. In addition these authors report a clear warning that
care must be taken not to use too large a value ofξL/L. They demonstrate thatξL/L = 0.26
is too large for accurate work, which means that some of the prior efforts in the investigation
of this area would be likely to suffer from significant systematic errors. Baker [24] had
observed that for the two-dimensional systems he found thatξL/L 6 1/(7±1) was required
for 1% accuracy. Baker and Erpenbeck further observed that the allowed value ofξL/L for,
say, 1% accuracy seems to increase somewhat withL and concluded that for large systems
the maximum allowed value ofξL/L must be somewhere in the range 0.11–0.26. They
recommended thatξL/L 6 0.10 for work at 1% accuracy.

In the second section we describe our Monte Carlo method, which is a cluster method.
Our main contribution here is the introduction of improved estimators for the second partial
derivative of the susceptibility with respect to the magnetic field and for the wavevector-
dependent susceptibility. It is mainly this improvement in the estimators that has made it
feasible to do all our computations. In the third section we report our Monte Carlo results
and use them to give our direct estimate ofg∗ ≈ 25.0± 0.5. We have computed results for
a series of cubes of increasing size for temperatures which correspond toξL/L ≈ 0.1. Our
largest system size is the 96-cube for which it took of the order of 20 processor months to
perform the required computations. In section 4 we show thatg‡ = 0 for the estimators we
are using. In section 5 we discuss the value of 4.5 . ĝ . 5.4. Thatĝ > 0 is crucial to the
argument that hyperscaling holds, and we find this result to be true by a wide margin with
respect to our error estimates. In section 6, we discuss briefly the Josephson hyperscaling
relation,dν = 2 − α. Our evidence is consistent with the hypothesis that this relation also
holds. Finally, in section 7 we use our Monte Carlo results to estimate some of the critical
indices. We conclude that these estimates agree within errors with those predicted by the
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Figure 1. A plot of Kg(K,L)/Kc versusK/Kc for the two-dimensional Ising model. The
unlabelled curve is the series result for an infinite system, and the labelsL indicate the curves
for L× L square lattices with periodic boundary conditions.

renormalization group, except for the specific-heat index, which we believe we have not
estimated in a reliable manner.

2. Method of calculation

In our computations a Monte Carlo method was employed. For pseudo-random numbers,
we employed the Tausworthe generator. We used the Swendsen–Wang algorithm [27] for
spin updating. This type of algorithm has two advantages over the conventional algorithm,
namely reduction in the autocorrelation time, and reduction in the variances of equilibrium
distributions of relevant quantities. As has been reported by several authors [28], we
observed that the cluster algorithm with improved estimators dramatically reduces statistical
errors. It was reported [29] that cluster algorithms are not necessarily much more efficient
than conventional algorithms with multi-spin coding techniques when only the first benefit,
i.e. the reduction in the correlation time, is taken into account. We emphasize, however,
that not only reduction of the correlation times but also use of improved estimators was
crucial to the present work. In fact, our preliminary computation showed that, for the 64-
cube, it was impossible to obtain results as accurate as those presented in [1] by means of a
conventional algorithm within a reasonable computation time (∼ a few months) and within
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Figure 2. A plot of g(K,L)(K/Kc)3/2 for the three-dimensional Ising model for the simple
cubic lattice with periodic boundary conditions. The cases shown are for systems ofL×L×L
spins, and the plot is versusξL/L. The pointξL = 0 is common for all values ofL and is exact.

the given resources, at the temperatures of the present interest. Our present computations
were performed on a cluster of eight IBM RS/6000 model 590’s, SUN 5’s, UltraSparcs, a
SparcServer2000, a Sun20, a Power PC and a PC pentium 90. As we will show, even for
smaller lattices it was obvious that the cluster algorithm performs better.

It is known [30] that a Monte Carlo simulation with a cluster algorithm, such as the one
used in this paper, can be viewed as a Markov process in an extended configuration space
that is a product of the original spin-configuration space and a graph space. Various physical
quantities defined in terms of spin variables have corresponding definitions in graphical terms
as well. For instance, it is well known that we can estimate the susceptibility, which is
usually defined as the second moment of the total magnetization, as the average volume of
clusters. It is also known that the equilibrium distribution functions of two corresponding
estimators, one in terms of spins and the other in terms of graphs, can have very different
variances although the mean values are equal. In the above example, the graphical estimator
is more advantageous because it has a much smaller variance than the estimator defined on
spin configurations.

Since we will deal with the renormalized coupling constant, which is a product of several
macroscopic quantities, we need to obtain the graphical representation of all the quantities
involved. Otherwise the relative error associated with the quantity estimated through the
poor estimator would be much larger than the relative errors from other sources and it
would dominate the relative error in the final estimate. First we rewrite the definition of the
renormalized coupling constant equation (1.9) as

g(K,L) ≡ −
(
L

ξL

)d 〈M4〉 − 3〈M2〉2

〈M2〉2
. (2.1)

Therefore, we need improved estimators forξL, 〈M2〉 and〈M4〉.
A new graphical estimator for the correlation lengthξL is derived as follows. We define

f (k) ≡ 4

(
sin2 kx

2
+ sin2 ky

2
+ sin2 kz

2

) (
1 − χ(k)

χ

)−1

(2.2)
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with

χ(k) ≡ 〈|M(k)|2〉/N (2.3)

whereM(k) = ∑
r exp(−ik · r)Sr. The quantityf (k) converges toξ−2

L in the limit of
L → ∞ and |k| → 0 with a correction term proportional to|k|2. In order to eliminate this
correction term, we formed a linear combination off (k) with six smallest possible values
of |k| which correspond to the nearest and the second-nearest neighbours to the origin in
the reciprocal space:

ξ−2
L = [2f (1k, 0, 0)+ 2f (0,1k,0)+ 2f (0, 0,1k)− f (0,1k,1k)

−f (1k, 0,1k)− f (1k,1k,0)]/3 (2.4)

where1k ≡ 2π/L. This expression is correct up to the second order in 1/L and we
estimatedξL through it. Thus estimation ofξL is reduced to computing〈|M(k)|2〉 for
several smallest reciprocal vectors.

It is well known that an improved estimator for the second moment of magnetization is
simply the average size of clusters [31], i.e.

〈M2〉 =
〈 ∑

c

V 2
c

〉
. (2.5)

Here,Vc is the number of sites in a clusterc. For the fourth moment of magnetization, we
can derive by the same methods the corresponding estimator,

〈M4〉 = 3

〈( ∑
c

V 2
c

)2〉
− 2

〈 ∑
c

V 4
c

〉
. (2.6)

We can expressχ(k) in a form analogous to equation (2.5):

〈M2(k)〉 =
〈 ∑

c

Vc(k)
2

〉
(2.7)

with

Vc(k) ≡
∣∣∣∑
r∈c

exp(ik · r)
∣∣∣. (2.8)

Thus, we have expressed all the necessary quantities in terms of improved estimators.
Our simulation consists ofNS independent runs. Each run consists ofNE sweeps

for equilibration followed byNM(1 + nR) Monte Carlo sweeps for measurement. Actual
measurements are done every(1+nR) steps and therefore the number of total measurements
performed in each run isNM. Accordingly, the total number of Monte Carlo sweeps
performed in the whole simulation isNtotal ≡ NS[NE + (nR + 1)NM]. (The item marked
by ‘a’ in table 1 was performed in a different fashion from this. For this simulation, the
equilibration sweeps were not for the second or later runs, but only at the beginning of the
whole simulation. Therefore,NE in table 1 for the item refers only to the first run, so the
total number of Monte Carlo sweeps here is justNE +NS(nR + 1)NM.) In the conventional
algorithm is it necessary to takenR > 0. One Monte Carlo sweep includes assignments
of ‘deletion’ or ‘freezing’ to all bonds and attempts to flip all clusters. The numbers used
in our computation are listed in table 1. Since the autocorrelation time is, regardless of
the definition, less than 100 [32] up to the system size of 963, the numbersNE andNM

listed in the table are large enough to exclude systematic errors due to autocorrelation.
As mentioned already, the temperature of the simulation is chosen so that the resulting
correlation length becomes approximately1

10 of the system size. We used the value ofKc

in multiplying the estimateg(K) by the factor(K/Kc)3/2. Adding this factor is appropriate
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Table 1. The parameters used in the computation, and the results.

L K NS NE NM nR Ntotal ξ 1

8 0.149 05 7 1000 1× 107 0 7.0 × 107 0.800 05(2) 0.011
16 0.1916 35 2000 2× 105 0 7.1 × 106 1.6024(2) 0.11
32 0.2108 35 2000 2× 105 0 7.1 × 106 3.2300(5) 0.15
64 0.2180 28 1000 1× 105 0 2.8 × 106 6.5843(20) 0.33
96 0.2197 41 1000 7× 104 0 2.9 × 106 9.8309(31) 0.32

a 16 0.1916 40 70 2× 104 6 5.6 × 106 1.6070(39) 1.8
b 16 0.1916 40 2000 4× 103 0 2.4 × 105 1.6033(14) 0.7

The valueKc = 0.221 6546 given in [36] was used. All the results presented are obtained
through the cluster algorithm except for a. The last column1 is the estimated statistical error
in (K/Kc)3/2g(K,L). The rows a and b are included only for comparison of the conventional
algorithm (a) and the cluster algorithm (b).

because the quantityg(K) has for smallK the dependenceg(K) ∝ K−3/2. As the actual
value ofKc, we can use almost any one of very accurate estimates available today, and
the choice does not affect the present result in any significant way. For example, Gupta
and Tamayo [33] quote 0.221 655, Ferrenberg and Landau [34] quote 0.221 6595± 26 and
Guttmann [35] using series analysis quotes 0.221 657± 12. We used Bl̈ote et al’s value
Kc = 0.221 6546(10) [36]. This latter quoted error makes a difference of at most 0.05% in
Kc −K in our cases.

3. Results for the direct estimation ofg∗

In order to estimateg∗, we choose for each system sizeL the temperatureT so thatL/ξ
is fixed to be a constantR. In the present paper we takeR = 10 for various reasons
mentioned in the first section. In other words, we estimatedg(K,Rξ(K)) in practice. In
order to ensure that we are controlling possible systematic errors, we have performed exact
computations on the 2-cube and the 3-cube at temperatures which correspond toξL = 0.2
and 0.3 respectively. These results were compared with series expansion results, which yield
very precise estimates forg(K,∞) in such a temperature range, and we found that the 2-
cube result is about 2.2% below and the 3-cube one about 0.8% below the infinite systems
series results. In addition, we have compared our very long run, highly accurate Monte
Carlo results for the 8-cube, table 1, with the series results. We find that it is about 0.2%
below the unbiased Padé approximant (see, for example, [37]) estimate. We conclude from
these comparisons that it is very likely that the systematic errors|g(K,Rξ(K))−g(K,∞)|
are less than 1%, and perhaps much less.

We have obtained results forg(K,Rξ(K)) for a sequence of temperatures with

Table 2. The estimates for various quantities.

L 〈M2〉 〈M4〉 − 3〈M2〉2 〈E2〉 − 〈E〉2 g (K/Kc)
3/2g 〈E〉

8 4.207 00(7)×100 −4.113(2)× 102 4.1554(6) 45.38(2) 25.02(1) −0.494 377(8)
16 1.2776(2)×101 −2.143(9)× 104 6.092(4) 31.9(1) 25.6(1) −0.703 30(2)
32 4.5681(8)×101 −1.92(1)× 106 9.224(7) 27.3(2) 25.4(2) −0.843 83(1)
64 1.7752(6)×102 −2.29(3)× 108 13.55(2) 25.5(3) 24.9(3) −0.922 51(1)
96 3.860(1)×102 −3.61(5)× 109 16.45(2) 25.5(3) 25.2(3) −0.947 670(6)
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Figure 3. The renormalized coupling constantg(K,L) times (K/Kc)3/2 versusK/Kc. The
open squares correspond to the simulations forL = 8, 16, 32, 64 and 96, from the left to the
right, respectively. The dotted curve is merely to guide the eye. The error bars represent one
standard deviation. The series analysis results are from the same type of analysis as in the
work of [38] and are marked by the open circles. The apparent errors are not displayed here
for K > 0.19 to avoid clutter. At the temperature of the 16-cube point the error is about±0.4
and it is about±3 for the rest of the points. The field-theoretic, renormalization-group value is
indicated at the right margin of the figure.

R = L/ξ ≈ 10 for various temperatures. The parameters used in simulations are listed
in table 1. We tabulate our results in table 2, and illustrate some of them in figure 3. We
conclude thatg∗ = 25.0(5). It can be seen that the central extrapolation of [38], which
tends to zero, falls well below our present results. We believe that this method does not
properly account for the leading subdominate behaviour. However, at the temperature of
the 8-cube point, it agrees with the unbiased Padé approximant mentioned above in that
the Monte Carlo result is about 0.2% lower. We take note that these series results were
wrongly plotted in our preliminary report [1]. We remind the reader of the caution of Nickel
[39] who found non-analytic corrections to the Callan–Symanzik beta functionβ(g) in one-
dimension, and suggested that there may also be such corrections in other dimensions which
would adversely effect the quoted error estimates for the field theory results,g∗ ≈ 23.73(2).
In [24] it was seen thatg∗ lies above the limit ofg(Kc, L) asL → ∞ in the two-dimensional
Ising model. In [33] using the histogram method, it was found that the value ofg(K,L) falls
very rapidly to about 5 asK → Kc. Combining these results with ours, we will conclude
in the next two sections that the value ofg∗ is greater than zero and so hyperscaling holds
for the three-dimensional Ising model.

4. Value of g‡

In this section we discussg‡ as defined by equation (1.11). Our starting point is the definition
of g(K,L) given by equation (2.1). If we sum the Lebowitz inequality (1.2) over all values
of the lattice sites for each of the four subscripts, then we see that the numerator of the
second factor is necessarily non-positive which means, by the positivity of the separate
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terms and Griffith’s second inequality that

2 > 3〈M2〉2 − 〈M4〉
〈M2〉2

> 0, (4.1)

and hence it is bounded for all temperatures.
The next quantity to consider isξL/L which is given in our work by equations (2.2)–

(2.4). First we need to study the order of magnitude ofχ(K,k) for K > Kc and
|k|L = O(1). Let us pick a definiteK. This corresponds to a definite spontaneous
magnetizationm. For a givenε > 0 there exists anL such that

|〈σσr〉 −m2 − g(r)| < m2ε (4.2)

uniformly in r for all r in our L × L × L cube, whereg(r) is the two-point correlation
function in the thermodynamic limit, which decays (exponentially) towards zero as|r| gets
large. We take0 in the centre of the cube for ease of exposition. Sinceg(r) > 0 by
Griffith’s second inequality, and for allK > Kc the low-temperature susceptibility,χ−,
is finite by low-temperature series results, and because the spin–spin correlation functions
can be proved to converge as the system size goes to infinity, we have the result quoted in
the above equation, with

∑
r g(r) = χ−. Near the origin,g(r) is necessarily bounded as

|σ | = 1 for the Ising model. Thus for|k| > 0∑
r

exp(ik · r)〈σOσr〉 =
∑

r

exp(ik · r)g(r)+ O(m2εLd) = χ−(K,k)+ O(m2εLd) (4.3)

whereχ−(K,k) is a definite quantity, finite-valued, independent ofL, and depending only
onK andk. The only property ofk that is used is its orthogonality to the magnetization.
In fact as we choose the smallest non-zero, Fourier component fork, and by using the
strong (i.e. integrable) decay ofg(r), we might as well substitutek = 0 in the sum, which
therefore yields justχ−. Hence, by (2.2),

L2f (k) = 4L2

(
sin2 kx

2
+ sin2 ky

2
+ sin2 kz

2

) [
1 −

∑
m,n eik·n〈σmσn+m〉∑

m,n〈σmσn+m〉

]−1

= 4L2

(
sin2 kx

2
+ sin2 ky

2
+ sin2 kz

2

)
×O

([
1 − χ−(K, 0)Ld + O(m2εL2d)

m2L2d + χ−(K, 0)Ld

]−1)
→ 4L2

(
sin2 kx

2
+ sin2 ky

2
+ sin2 kz

2

)
[1 + O(ε)] asL → ∞. (4.4)

Sinceε can be taken as small as we please, and since by (2.4) the 1’s cancel, we conclude
that for anyK > Kc, and for our estimator for the correlation length,(L/ξL)d → 0 and
thus the conclusion which we have already stated in equation (1.11), thatg‡ = 0, follows.

This conclusion, together with the results of series analysis [37], and both our results
and those of others, strongly suggests the conjecture that in the three-dimensional, spin-1

2
Ising model for fixedL, g(K,L) is a decreasing function ofK. (Baker and Kincaid [38]
provide some evidence that this conclusion may not always be valid for the continuous-spin
Ising model.) On the basis of this conjecture we can easily write

g(K − δK,L) > g(Kc, L) > g(K + δK,L). (4.5)

By first taking the limit asL → ∞ of this series of inequalities and then the limitδK → 0,
we obtain, in the notation of equations (1.10)–(1.12),

g∗ > ĝ > g‡. (4.6)
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Sinceg‡ = 0, as we have just seen, and since we are trying to see if we can determine
whether or notg∗ > 0, which would establish the validity of hyper-scaling, we next turn
our attention toĝ.

5. The estimation ofĝ

In this section we will focus on the behaviour of the various estimator functions very near
the critical point. We have used our Monte Carlo method to compute, for values ofK

on both sides of the critical value,g(K,L) and ξ(K,L). We have used 300 000–500 000
Monte Carlo sweeps to gather this data. To simulate the histogram method, we have used
K-independent random numbers. The smaller number of sweeps was used for the smaller
sizes of cubes and the larger number of sweeps for the largest cube. The 2-cube was done
exactly. We display them in figure 4, in a manner corresponding to figure 2. The whole
range ofK reflected in this figure vanishes asL → ∞. This feature is, as we will see, a
consequence of the result thatg∗ > g‡ and that the curves for finiteL are continuous. Note
is also taken that this figure also supports the conclusion of the previous section, namely that
g‡ = 0. We see in this figure that in the region very near the critical point the data collapses
rapidly as the system size increases to give a single curve. Thus without going to very
large systems, we obtain the profile ofg versusξL/L with much less computational effort.
We conclude from this figure that the location of the value ofξ(Kc, L)/L and g(Kc,∞)

are for our purposes of finding out whetherĝ > 0 or not, just two sides of the same coin.
Preliminary reports of this part of the work have been made [40, 41].

The simplest method to estimate this quantity was used in [40]. Here all the best
current estimates of the critical point (see above) were noted and the results forg(K,L)

were computed for this range ofK ’s and a variety of values ofL. Their results are displayed
in figure 5. It will be seen that this analysis leads to the idea thatĝ = 5.0(3).

A more sophisticated approach was used in [41]. The point is that the limit at any point
K 6= Kc as the system size tends to infinity will beg∗ or g‡, so we need to contract the
interval inK over which we examineg(K,L) as the system size increases. To this end, it
is useful to be able to estimate the uncertainty in the location of the critical point for each
value ofL. We use two related estimators. The first is due to Binder [42]. He pointed out
that the cumulant ratio,

U = 〈M4〉
(〈M2〉)2 − 3 (5.1)

definitely converges to zero asL → ∞ for K < Kc and to−2 forK > Kc. He then argued
that it goes to a fixed-point valueUc atK = Kc, and so with certain monotonic convergence
assumptions he concluded that theU(K,L)’s for successive values ofL cross at a point
which rapidly approaches the critical point. Baker [24] found that, at least for small values
of L, this is true in the two-dimensional Ising model and the accuracy of this estimate is
about an order of magnitude better than that using the peak in the specific heat. From the
picture we have built up of the functiong(K,L) the same features should appear for it as
did for U . Thus we take the crossing points ofg(K,L) for successive values ofL as our
second estimator. These results are summarized in table 3. It should be noted that values
of K for which the crossings ofU occur are numerically monotonically decreasing with
increasingL, and those for which the crossings ofg occur are numerically monotonically
increasing. In line with figure 4, the values ofg at these latter crossings are monotonically
decreasing and may provide an upper bound toĝ. Furthermore, within the reported error, all
theg crossings are for smaller values ofK than for any of theU crossings. Remembering
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Figure 4. A plot of g(K,L)(K/Kc)3/2 for the three-dimensional Ising model for the simple
cubic lattice with periodic boundary conditions. The cases shown are for systems ofL×L×L
spins, and the plot is versusξL/L. (a) shows a large range ofξL/L and(b) shows a magnified
portion near the critical point. The error bars are one standard deviation, but they mainly do
not show in(a) because they are inside the ‘dots.’

the monotonicity ofg(K,L) for fixed L which we discussed previously, we have also
tabulated the values ofg at theU crossings. This sequence is not as smooth as it might be,
but it is mostly monotonically increasing inL. This sequence may form a lower bound to
ĝ. It is reported in [41] thatg(0.221 655, 64) ≈ 4.89(6) (they used 400 000 Monte Carlo
sweeps). Taking all these results together, at the two-standard-deviation level, we estimate
that 4.5 . ĝ . 5.4. In terms of (4.6), these results are sufficient to establishg∗ > 0, which
in turn, we think, establishes beyond reasonable doubt thevalidity of hyperscalingfor the
three-dimensional Ising model!
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Figure 5. The renormalized coupling constant in the neighbourhood of the critical temperature
for several lattice sizes.

Table 3. The curve crossing values ofK andg for the curvesg andU .

n⊗ 2n Kg,⊗ g⊗ KU,⊗ U⊗ g(KU,⊗, L)

2 ⊗ 4 0.2135(2) 8.24(3) 0.2274(3) −1.5836(7) 3.96(11)
4 ⊗ 8 0.2209(1) 5.77(6) 0.2227(1) −1.501(4) 4.40(11)
8 ⊗ 16 0.221 56(7) 5.2(1) 0.222 01(2) −1.489(2) 4.26(7)
16⊗ 32 0.221 64(2) 5.1(1) 0.221 68(2) −1.425(9) 4.8(2)
32⊗ 64 0.221 65(1) 5.0(2) 0.221 66(1) −1.414(7) 4.9(2)

6. The hyperscaling relation dν = 2 − α

We have not made a detailed study of the Josephson, hyperscaling relation dν = 2 − α

but our results, as reported in tables 1 and 2, do shed some light on its validity. Since the
reported errors of the value ofKc are so small as to be relatively unimportant at the distance
from the critical-point at which our data is taken, we feel justified in using the biased (by
the knowledge of the critical-point location) estimator function,

κ(K,L) = [(Kc −K)2CH(K,L)ξ
d(K,L)]−1. (6.1)

HereCH is the specific heat at constant magnetic field. In the range 0< K < Kc κ is
non-negative definite. Our results for it are shown in figure 6 and are consistent with the
idea that

lim
K→Kc

lim
L→∞

κ(K,L) > 0. (6.2)

All our points should have a systematic error of the order of 1% or smaller, and the statistical
errors are again masked by the size of the ‘dots’. We conclude that our numerical results
are consistent with this hyperscaling relation.

7. Estimates of various critical indices

The main purpose of this article is not to estimate critical indices, however, when we make
log–log plots of our data versusKc −K, they tend to be quite straight, with the plot forχ
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Figure 6. The estimator function for the Josephson relation versusKc −K.

Table 4. Various critical indices

Index Our results Reference [20]

γ 1.238(2) 1.241(4)
γ + 21 4.41(4) 4.373(14)
ν 0.62(3) 0.630(2)
α 0.18(2) 0.111(6)

the straightest and that forCH the least straight. The following three-point equation forψ ,

1 = z

(
Kc −K3

Kc −K2

)−ψ
+ (1 − z)

(
Kc −K1

Kc −K2

)−ψ
wherez = φ(K2)− φ(K1)

φ(K3)− φ(K1)
(7.1)

is appropriate to a function of the form

φ(K) = A(Kc −K)−ψ + B (7.2)

and is a simplified variant of the exponential fitting problem which is straightforward to
solve numerically. Our results are displayed and compared with those of the field theory
implementation of the renormalization group [20] in table 4. It will be seen that they are
all consistent within errors except for the specific heat exponent,α. The errors quoted for
our results are the statistical errors associated with the Monte Carlo estimation and do not
include possible systematic errors due to takingξL/L ≈ 0.1 instead of zero, nor do they
include errors in the fitting form (otherwise known as corrections to scaling). Our results
for γ appear to be quite comparable in accuracy to previous estimates and the log–log plot
is quite straight in this case. In the case ofα the strong variation, illustrated in figure 6, in
our view makes this simple-fitting scheme inappropriate. It appears thatA in equation (7.2)
should not be treated as a constant here but is strongly varying.

References

[1] Baker G A Jr andKawashima N 1995Phys. Rev. Lett.75 994



Renormalized coupling constant in the Ising model 7197

[2] Griffiths R B 1967J. Math. Phys.8 478
[3] Ginibre J 1969Phys. Rev. Lett.23 818
[4] Baker G A Jr 1975J. Math. Phys.16 1324
[5] Lebowitz J L and Penrose O 1973Phys. Rev. Lett.31 749
[6] Simon B 1980Phys. Rev. Lett.44 547
[7] Lebowitz J L 1974Commun. Math. Phys.35 87
[8] Newman C M 1975Commun. Math. Phys.41 1
[9] Baker G A Jr andKrinsky S 1977J. Math. Phys.18 590

[10] Schrader R 1976Phys. Rev.B 14 172
[11] Widom B 1965J. Chem. Phys.43 3898
[12] Kadanoff L P 1966Physics2 263
[13] Aizenman M 1981Phys. Rev. Lett.47 1
[14] Kadanoff L P 1969Phys. Rev.188 859

Stephenson J 1964J. Math. Phys.5 1009
[15] Baker G A Jr andBonner J C 1975Phys. Rev.B 12 3741
[16] Josephson B D 1967Proc. Phys. Soc.92 269–76

Sokal A D 1981 J. Stat. Phys.25 25–51
[17] Wilson K G 1971Phys. Rev.B 4 3174–84

Wilson K G and Kogut J 1974Phys. Rep.C 12 75
[18] Wilson K G and Fisher M E 1972Phys. Rev. Lett.28 240
[19] Hara T 1987J. Stat. Phys.45 57

Hara T and Tasaki H 1987J. Stat. Phys.45 99
[20] Baker G A Jr, Nickel B G, Green M S and Meiron D I 1976Phys. Rev. Lett.36 1351

Baker G A Jr, Nickel B G and Meiron D I 1978Phys. Rev.B 17 1365
LeGuillou J-C and Zinn-Justin J 1977Phys. Rev. Lett.39 95

[21] Fisher M E 1967Rep. Prog. Phys.30 615
[22] Baker G A Jr 1977Phys. Rev.B 15 1552
[23] Zinn S-y, Lai S-N and Fisher M E 1996Phys. Rev.E 54 1176
[24] Baker G A Jr 1994J. Stat. Phys.77 955
[25] Baker G A Jr andErpenbeck J J 1994Computer Simulation Studies in Condensed-Matter Physics VII (Springer

Proc. Phys. 78)ed D P Landau, K K Mon and H-B Scḧuttler (Berlin: Springer)
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